Military Power Conference December 15, 2022

Presented by: Matthew Raiford, Senior Technical Manager, Consortium for Battery Innovation

CONSORTIUM FOR BATTERY INN⊕VATI⊖N

The US Lead Battery Industry: Growth, ESS Examples, and Innovations

CBI Members

CBI Partners

US Lead, Lead Battery Economic Impact

The industry provides a of total 92,200 jobs.

Beyond jobs, the U.S. lead battery industry annually supports:

- **\$6.0 billion** in labor income,
- **\$10.9 billion** in GDP
- \$26.3 billion in output or overall economic impact
- **\$2.4 billion** in government revenue.

Lead Battery Industry Provides Direct Jobs in 38 States

A Model for Circular Economy

The lead battery is the most recycled product in the world, brought on by the need to both steward Pb and create a stable and robust supply chain. Sustainability requires a strong domestic manufacturing base...

https://www.wsj.com/articles/lithium-prices-soar-turbocharged-by-electric-vehicle-demand-and-scant-supply-11639334956

November 15, 2021 7:00 PM CST Last Updated a month ago

5 minute read

Energy

Column: United States adds nickel, zinc to critical minerals list: Andy Home

By Andy Home

https://www.reuters.com/business/energy/united-states-adds-nickel-zinc-critical-minerals-list-andy-home-2021-11-15/

The lead battery is the most recycled product in the world, brought on by the need to both steward Pb and create a stable and robust supply chain. Sustainability requires a strong domestic manufacturing base...

A Model for Circular Economy

10 recycling centers across the country handle over 3 billion lbs. of lead batteries per annum:

- Thousands of distribution centers
- Market driven scrap market Ο
- Well developed logistics Ο
- Domestic customer base (dozens of Ο manufacturing facilities, many located near recycling centers)
- Transparent requirements, secondary Ο specifications are well developed
- Mature regulations for: oTransport of scrap and batteries Environmental controls •Materials Handling •Toxicity Levels

Safe, Infinite Recycling Through an Established Circular Network

Key component for safe operation

Lead batteries are the go-to solution for 12 V batteries in vehicles, and in electric vehicles serve as the auxiliary safety battery.

- Back up for power steering. Ο
- Back up for brake boosting. Ο
- Powers also radio, sound, and peripheral electronics like back up cameras and side detectors.
- Designed to provide critical power in the event of an accident.
- Redundancy for ASIL level back up for automated driving.
- Integrated solutions optimized based on Ο collaboration with sensor and automotive manufacturers.

How lead batteries could make EVs safer

Lead batteries are highly safe and reliable.

Image: Unsplash/ Andrew Roberts

This article was originally published by the Consortium for Battery Innovation

09 Aug 2021

Dr Christian Rosenkranz

Chair of CBI and Vice President Industry and Governmental Relations EMEA, Clairos

Technical Roadmap

Research and innovation pathways for next-generation advanced lead batteries

September 2021

 \oplus

Global lead-based battery sales, B \$, 2010-2030

ΒŞ

Technical Roadmap

Research and innovation pathways for next-generation advanced lead batteries

September 2021

 \oplus

Automotive (start-stop/micro-hybrid)

Ensure that recent improvements in Dynamic Charge Acceptance (DCA) are maintained, whilst improving high-temperature performance and ensuring no trade-offs in key parameters such as Cold Crank Amps (CCA) and water loss.

Improve DCA and charge acceptance, whilst increasing charging efficiency and lifetime.

Energy Storage Systems

Improving cycle life, calendar life and round-trip efficiency whilst reducing acquisition and operating costs.

Industrial applications

Improving cycle and calendar life, whilst reducing battery costs.

Motive Power

Lowering TCO by increasing cycle life, recharge time, and producing maintenance-free batteries.

Other applications (including e-bikes)

Improving gravimetric energy density, recharge capability and service life.

Automotive KPIs – Start-Stop/Micro-hybrid

\circ Key Driver is DCA

- Reported values of 1.25 A/Ah in current products.
- Preliminary cases of DCA above 2.0 A/Ah.
- High Temperature Durability is an important OE metric.
 - Lead batteries currently meet OE needs.
 - HTE test development in line
 with SAE J2801
 performance.
- Performance of other metrics must be sustained.

Indicator (start-stop, micro
DCA (EN 50342-6, A/Ah
Ford Run-In Test B (A/Ah
Durability: HTE (IEC/CEN draft)
Water Loss – EN/HTE (g/
CCA, RC (comment)

ro/hybrid)	2021/2022	2025	2030
h)ª	1.25	2.0	2.0
\h)	1.0	1.5	2.0
ENELEC	16	20	20
g/Ah)	<3	<3	<3
	Must not be compromised	Must not be compromised	Must not be compromised

$\circ\,$ The following KPIs are aggressive:

- $\circ\,$ Must be competitive with Li-ion.
- Federal stakeholders and utilities have set up truly severe techno-economic drivers (US DOE and EU commission)

$\circ\,$ Operational cost and acquisition cost are vital.

- Round Trip Efficiency primarily for renewable energy such as load following applications.
- Productization is key configure and customize lead batteries to power conversion and control systems.
- The 2030 targets align with many opportunities from various governments for battery energy storage

Indicator	2021/2022	2025	2028	Stretch Target 2030
Service life (years)	12-15	15-20	15-20	15-20
Cycle life (80% DOD) as an estimate for C10 or higher rates	4000	4500	5000	6000
Operational cost for low charge rate applications (above C10) – Grid scale, long duration	0.12 \$/kWh/energy throughput	0.09 \$/kWh/energy throughput	0.06 \$/kWh/energy throughput	0.04 \$/kWh/energy throughput
Operational cost for high charge rate applications (C10 or faster) - BTMS	0.25 \$/kWh/energy throughput	0.20 \$/kWh/energy throughput	0.15 \$/kWh/energy throughput	0.10 \$/kWh/energy throughput
Energy Storage efficiency (Wh in vs Wh out)(%)	75-90	80-90	85-90	88-92
Round Trip Effi- ciency (%)	85	88	90	92
Acquisition Cost (cell level) (\$/kWh – 10 MW assumption)	175	140	100	75
Energy Density (Wh/I)	80-100	110	120	140
Acquisition cost, ESS level (\$/kWh)	350	325	300	275

gy

Advanced lead battery research

US Synchrotron at ANL Argonne National Laboratory

Site of lead battery research

IMPROVING UTILIZATION AND CYCLE LIFE Issue = heterogeneity: a challenge over many length scales

Improving utilization and lifetime is inherently a multiscale problem: ■ Atomic level issues: PbSO₄ nucleation, Pb²⁺ solvation, acid dissociation, additives/dopants Particle level issues: sulfation/pore clogging, diffusion/tortuosity limitations for e⁻ and SO₄²⁻ Cell level issues: electrolyte stratification, grid corrosion, paste shedding/softening Battery level issues: charge/discharge procedures, impedance, electrolyte management, grid design

Atomic level (~nm, nAh)

Example: monolayer growth of PbSO₄ on barite 001.

Particle level (~µm, µAh)

Example: Reconstructed volume from CT scan of a paste electrode (color = density)

Cell level (~mm, mAh-Ah)

Example: Electrolyte mapping during formation (OE data used for LBSRP!)

Battery level (~100 Ah)

Example: cycling at PNNL and XRD from EOF battery plates

LoCEL-H2 – European Funding Project

European Commission

Hollingsworth & Vose[®] Creating a Cleaner World[™]

BNBRCY

EO – 14017: Resilience Needs

 ...identifying risks in the supply chain for high-capacity batteries, including electric-vehicle batteries, and policy recommendation to address these risks.

 Energy storage demand, especially for lithium-ion (Li-ion), has created potential national security issues.

 ESS systems provide a unique solution for the military to make operational centers independent of outside resources, such as gas or petroleum.

1	C
Т	U

Military Microgrid Overview

1	C
Т	C

Progress since 2019

Thank you!

Further questions: matt.raiford@batteryinnovation.org

CONSORTIUM FOR BATTERY INNEVATION