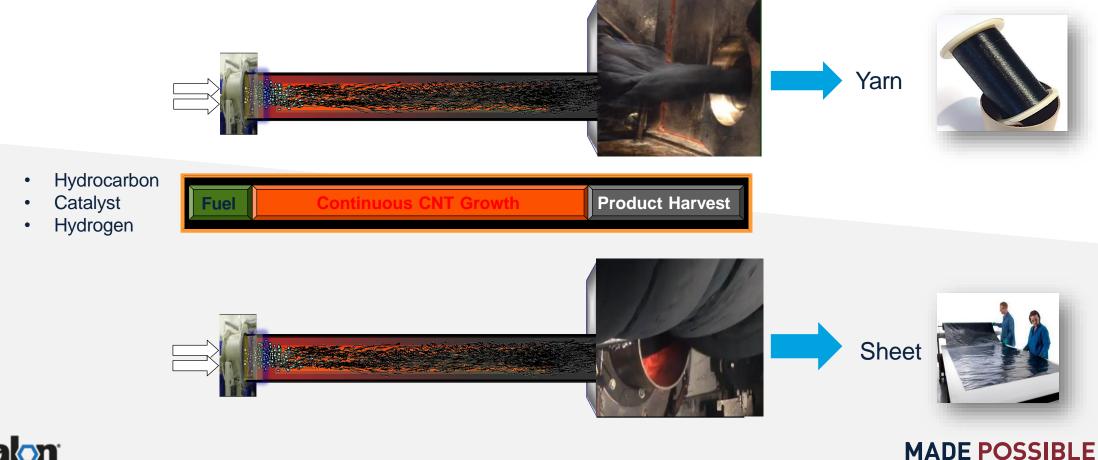


Enabling Emerging Battery Technologies with Networked CNTs

- Defense Power & Energy Conference: June 4-6, 2024
- Mark Schauer, Steven Lacey, Jerzy Gazda

Enriching lives through innovation

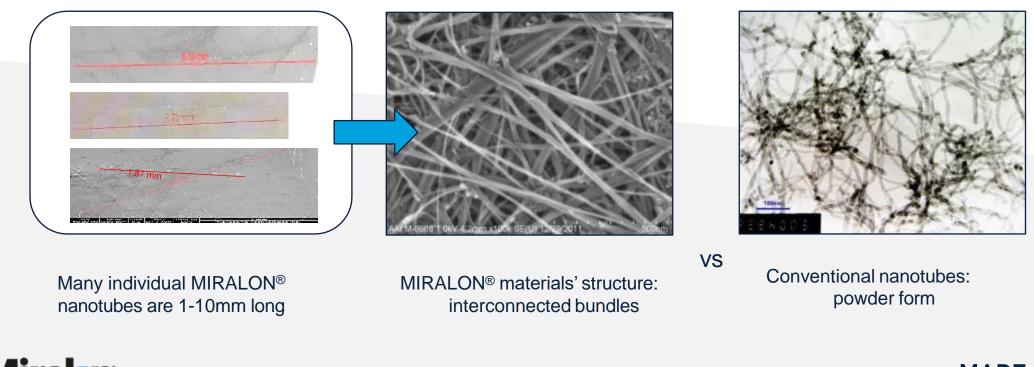

MIRALON® Carbon Materials

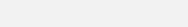
MIRALON® Materials Manufacturing

FC-CVD continuous production process

The Floating Catalyst Chemical Vapor Deposition (FC-CVD) process converts fuel into long nanotubes which coalesce into a macro structure of branched bundles

HUNTSMA


Enriching lives through innovation



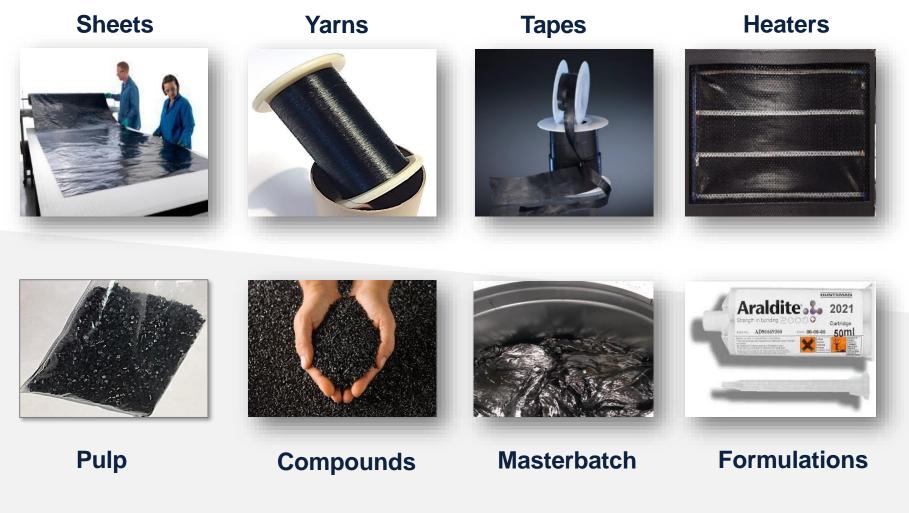
Differentiated from standard carbon nanotubes

The length and unique interconnection between bundles that make up MIRALON[®] translates into enhanced properties.

- Increased strength
- Increased conductivity
- Increased toughness
- Better thermal conductivity

HUNTSN

Enriching lives through innovation



4

A Range of MIRALON[®] Product Forms

Enabling performance and design flexibility

MIRALON® Carbon Materials

Key benefits compared to nanotube technologies

Electrical properties

MIRALON[®] Pulp competes with single-wall CNTs (SWCNTs)

miralon

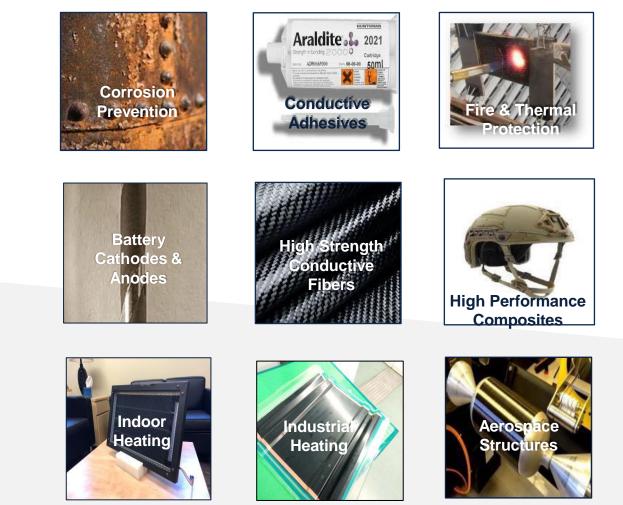
3500 Viscosity of filled resin in Pa.s at 1s-1 3000 — Multiwall CNT ---- Singlewall CNT 2500 2000 1500 1000 500 0 0.00001 0.0001 0.001 0.01 0.1 Electrical conductivity in S/m

Moderate impact on viscosity at equivalent electrical conductivity

Viscosity

examples based on mixtures in epoxy resin

MADE POSSIBLE


6

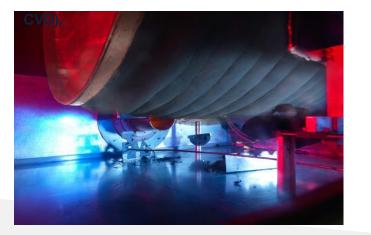
MIRALON[®] Properties

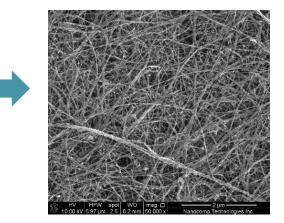
Enhancing products across multiple markets

The MIRALON[®] materials' technology is driving innovation in aerospace, coating, composites and automotive markets

- Strength
- Electrical conductivity
- Thermal conductivity
- Corrosion resistance
- Mechanical damping

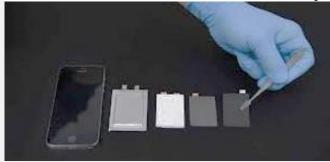
MIRALON® in Batteries




Enriching lives through innovation

Sheet material is processed into pulp then dispersed and spread on current collector

MIRALON[®] sheets made FC-CVD


Entangled Network of Bundles.

Dispersible Pulp made by standard paper processing methods

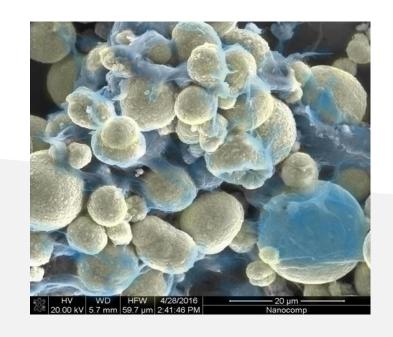
Anode, cathode, separator, electrolyte and case are combined to make a battery

The Masterbatch is dispersed with active material and spread onto a current collector.

The pulp is combined with a binder and solvent to make a Masterbatch

Interconnected bundles enhance connectivity

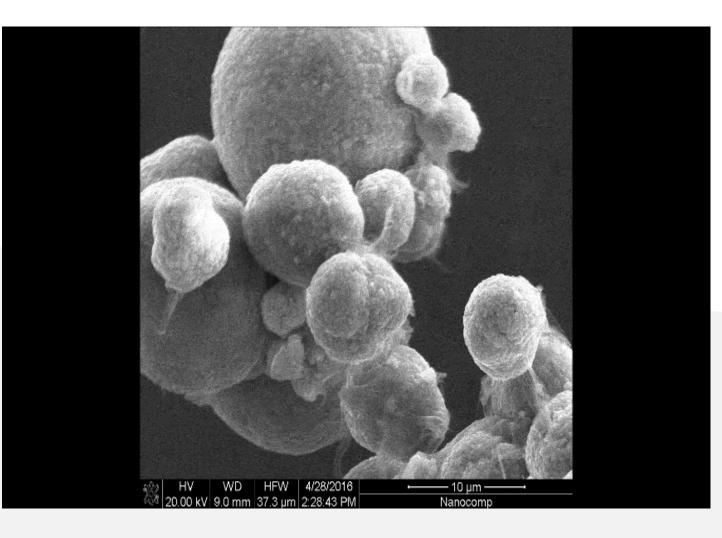
- Hierarchical structures unlike anything seen with powder CNT
- · Long-range interconnections of branched bundles in the active material
- Wraps around particles & holds them together, making electrical and mechanical connection



Aqueous MIRALON[®] Pulp Dispersion showing "Sheetlets"

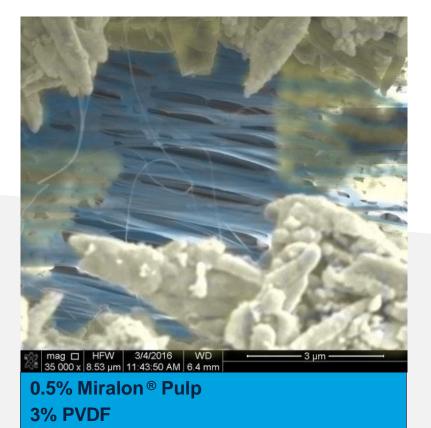
Miralon

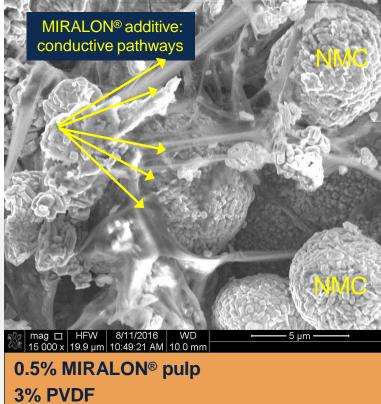
NMP Masterbatch: 1.25% MIRALON® Pulp, 3.75% PVDF.

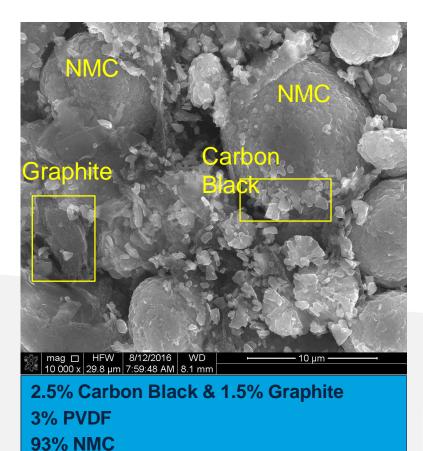

0.5% MIRALON® pulp 3% PVDF in NMC MADE POSSIBLE

Enriching lives through innovation

Interconnected bundles enhance connectivity






MIRALON[®] enables higher conductivity and more active material

96.5% LFP

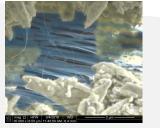
Highlights

MIRALON® materials enable better battery performance and improved safety compared to carbon black

MIRALON® Features

Electrically Conductive

 Miralon's long strands create conductive pathways that provide 16x better electrical conductivity than carbon black


Thermally Conductive

 Interconnected bundles provide enhanced ability to transfer heat to reduce ohmic heating & thermal mgmt. issues

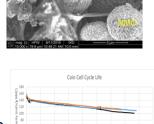
Strength & Flexibility

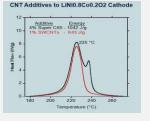
 Improves mechanical properties and cohesion within coatings. It also adds flexibility allowing for thicker media unlike brittle carbon black

Mass Reduction & Increased Capacity

 8Xs lower loading levels enables higher amounts of active material reducing non-active mass

MIRALON[®] Benefits

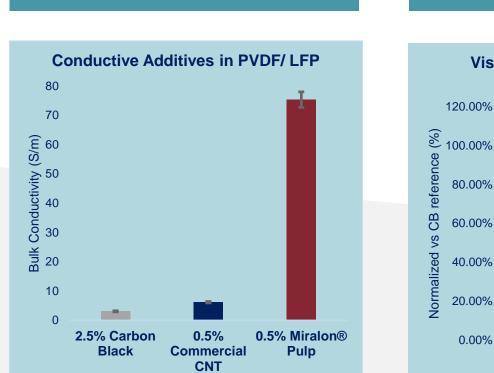

Strength and flexibility enables thicker cathodes increasing volumetric capacity up to 20%


Longer Cycle Life

 Preliminary investigation indicates that lower carbon loading levels to lessen the potential of degradation of the electrolyte providing a longer cycle life

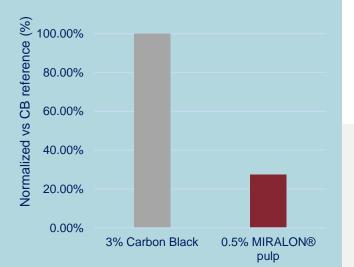
Improved Safety

- Safety expected to be improved by reducing exotherm by 40% based initial findings
- Lower internal resistance significantly reduces discharge heating



Better Conductivity, Processing & Mechanical Properties

Enriching lives through innovation

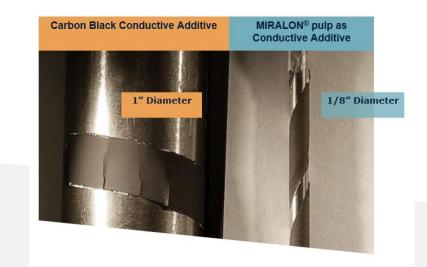


Higher electrical conductivity at lower loadings

Electrical Conductivity

Improved Processing Performance

Viscosity at 1000 s⁻¹ (Pa.s) in PVDF / NMC / NMP 0.00%

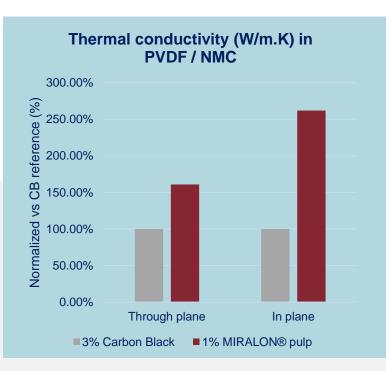

Lower viscosity enables use of less solvent

This project received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 875548.

Mechanical Performance

Strength & Flexibility

Eliminates brittleness and cracking


Note: Presented data has been verified using in-house and third-party labs. Additional testing programs underway

miralon

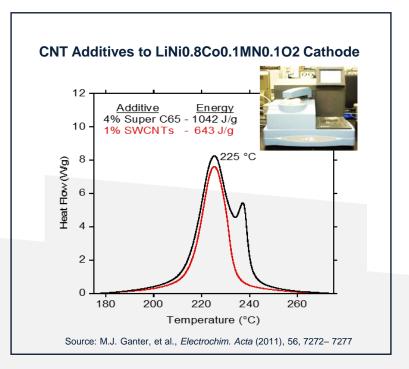
MIRALON[®] Materials Properties

Better Thermal Management

Improved Thermal Management

Higher thermal conductivity at lower loadings

15


miralon

This project received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 875548.

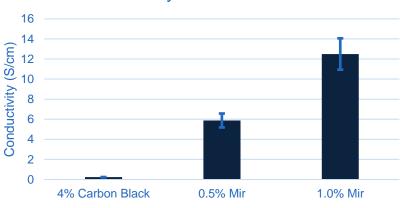
Enriching lives through innovation

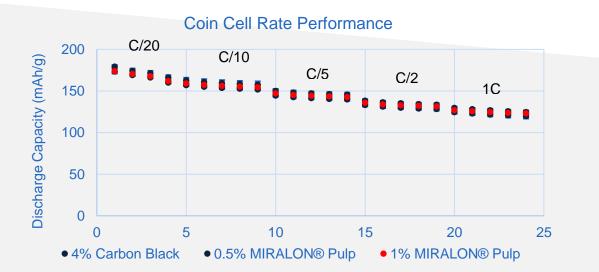
Improved Thermal Management

Indications in literature of reduced exothermic energy released (J/g)

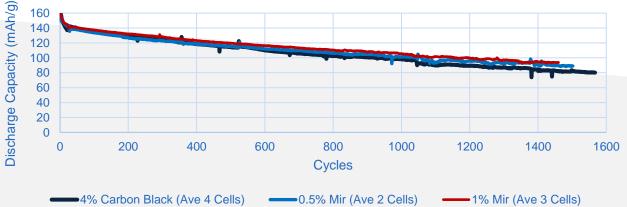
"Differential scanning calorimetry analysis of an enhanced LiNi0.8Co0.2O2 cathode with single wall carbon nanotube conductive additives" Matthew J. Ganter, Roberta A. DiLeo, Christopher M. Schauerman, Reginald E. Rogers, Ryne P. Raffaelle, Brian J. Landi. **Electrochimica Acta** 56 (2011) 7272–7277

Note: Presented data has been verified using in-house and third-party labs. Additional testing programs underway


MIRALON[®] Pulp and JEFFSPERSE[™] Dispersion Aid in LiBs

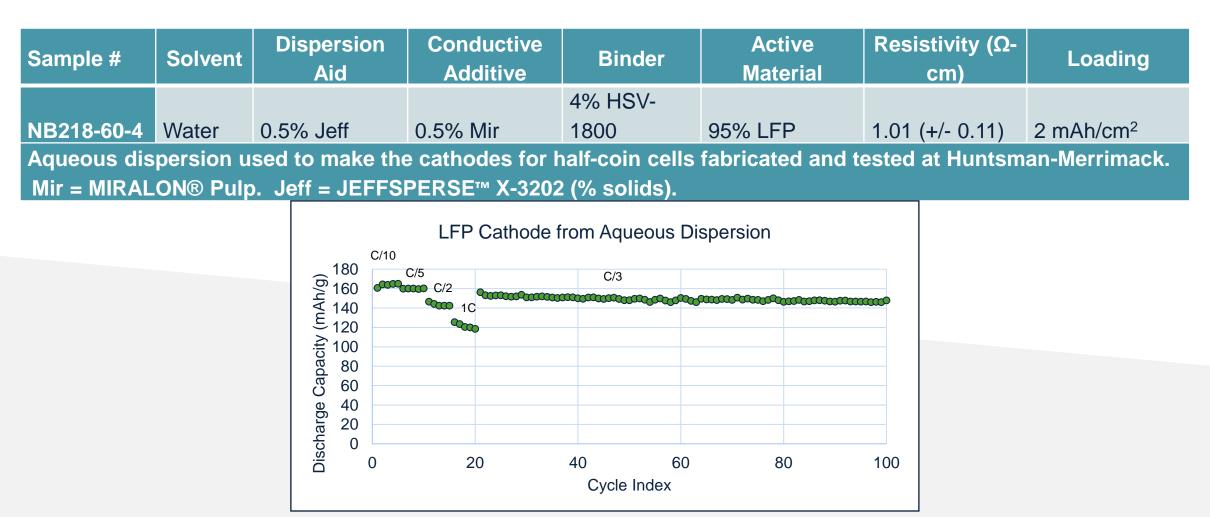

Enriching lives through innovation

HUNTSA


Sample #	Dispersion Aid	Conductive Additive	Active Material	Resistivity (Ω-cm)			
C1	None	4% Carbon Black	92% NMC-622	4.40 (+/- 0.30)			
C3	0.5% Jeff	0.5% Mir	95% NMC-622	0.17 (+/- 0.02)			
C4	1.0% Jeff	1.0% Mir	94% NMC-622	0.08 (+/- 0.01)			
Full coin cells fabricated and tested at RIT.							
Mir = MIRALON® Pulp. Jeff = JEFFSPERSE™ X-3200.							

Conductivity of Cast Cathodes

Full Cell Cycle Life (Graphite / NMC-622)

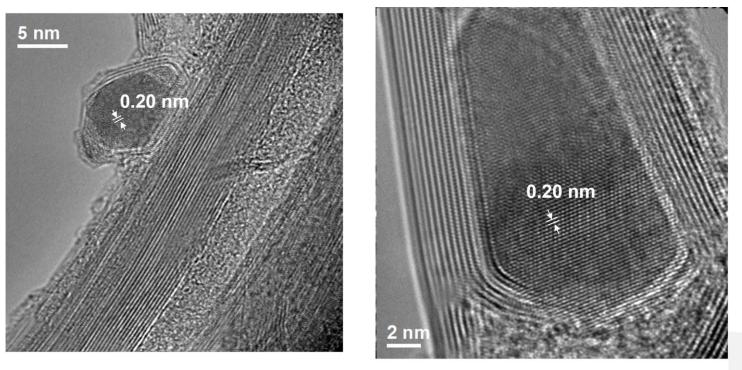


JEFFSPERSE[™] X-3200 as a dispersion aid enables MIRALON[®] Pulp as a conductive additive in NMP. Graphite anode, 4% HSV-900 binder, 2 mAh/cm2 loading.

Enriching lives through innovation

MIRALON[®] Pulp and JEFFSPERSE[™] Dispersion Aid in LiBs

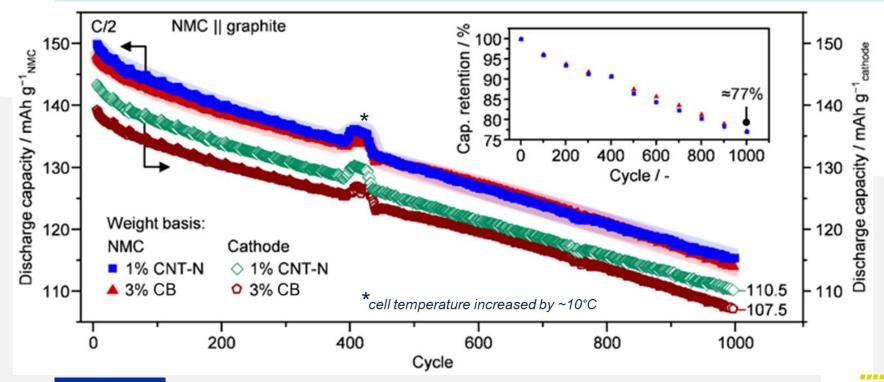
LFP Cathode slurries containing JEFFSPERSE[™] X-3202 and MIRALON[®] Pulp enable the use of PVDF binders in Aqueous Dispersions (with post-casting treatment).


MIRALON[®] Battery Performance

MADE POSSIBLE

Enriching lives through innovation

Floating Catalyst CVD means the Fe is still in there....


Layers of graphitic carbon nanotubes surround the nanoparticles. Lattice fringes are separated by 0.20 nm spacing which could be correspond to lattice plane of Fe_3C .

... encased in multiple layers of graphene, rendering the Iron chemically inert and having no effect on battery performance.

SeNSE / EU Horizon 2020 project

Equivalent stability and higher capacity of NMC532/graphite full cells with **MIRALON®**

- 1% MIRALON[®] (CNT-N) cells outperform 3% CB cells when cycled at C/2 charge-discharge rates:
 - comparable capacity retention after 1000 cycles
 - higher capacity both per NMC and particularly per cathode mass

Enriching lives through innovation

Cycled from 2.8-4.2 V vs. Li/Li+

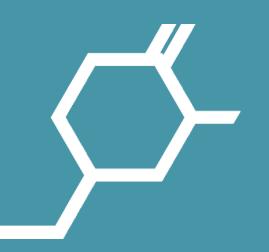
 \rightarrow if Fe redox occurs, we would <u>not</u> see similar capacity retention to C65 cathode over 1000 cycles

Note: 1wt% MIRALON[®] in cathode means that 0.25wt% is Fe-based species

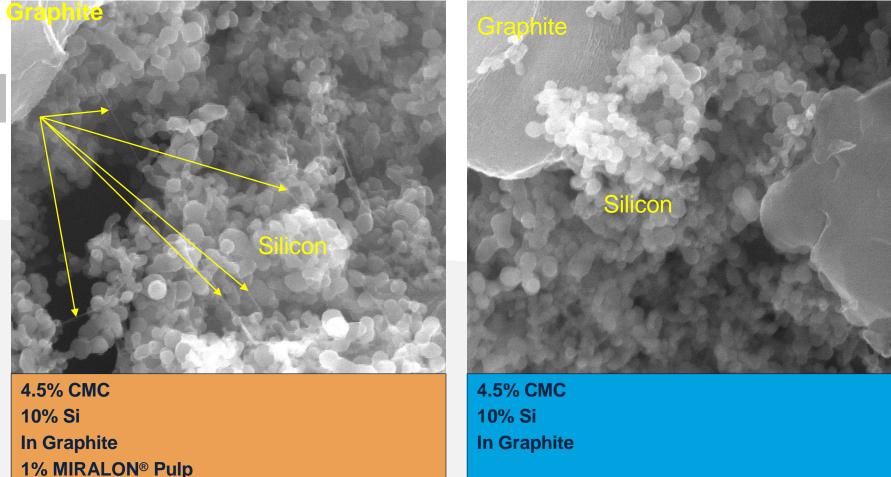
*all data with 3% PVDF binder

19

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875548.

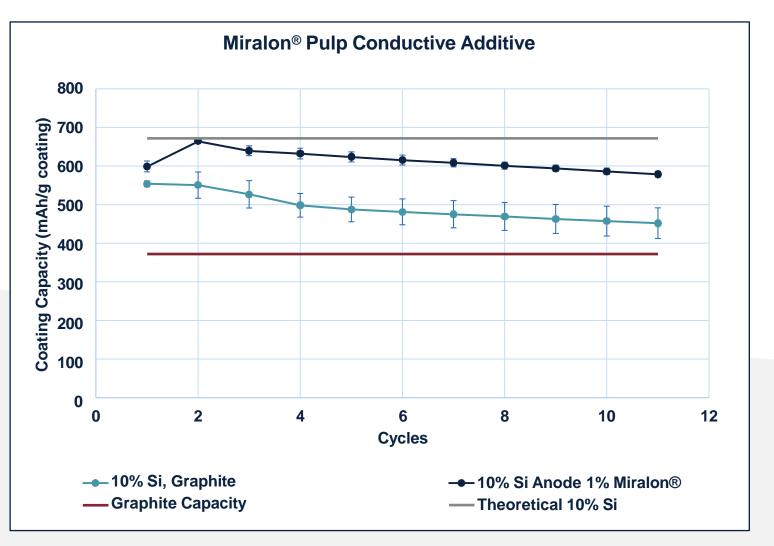

SëNSE Disclaimer: This document reflects only the author's view and the Agency is not responsible for any use that may be made of the information it contains.

MIRALON® Additives for Anodes



MIRALON® materials connect Silicon particles to the current collector increasing the number of working Silicon particles

MIRALON® additive: conductive pathways

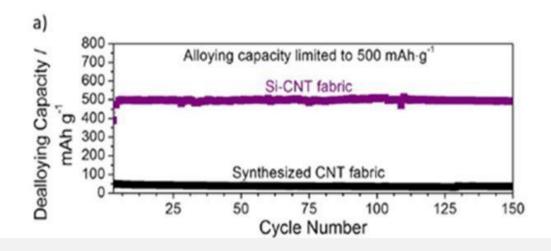


²¹ Miralon

MIRALON[®] Additive Improves Anode Capacity

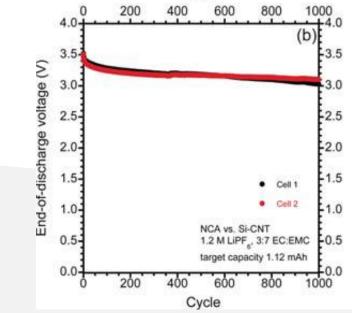
10% Si tests indicate >25% capacity increase

- Aqueous CMC dispersion interconnects Si nanoparticles electrically and mechanically
- With MIRALON® additive, achieved Theoretical Capacity (Li15Si4) on 2nd cycle
- Better cycle performance is expected with better Nano-Si



Independent University Studies show dramatically improved capacity with good cycle life.

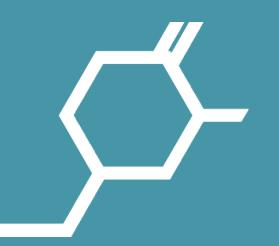
Silicon coated MIRALON® Sheet Material by the Gleb Yushin Group at Georgia Tech


Silicon coating on MIRALON[®] sheets was limited to about 50% loading, and ~30% depth-of-discharge, which resulted in ~ 2X improvement over graphite with no fading at 150 cycles

Source: "Ultra Strong Silicon-Coated Carbon Nanotube Nonwoven Fabric as a Multifunctional Lithium-Ion Battery Anode" Kara Evanoff, Jim Benson, Mark Schauer, Igor Kovalenko, David Lashmore, W. Jud Ready, and Gleb Yushin. ACS Nano, 2012, 6 (11), pp. 9837-9845

Silicon coated MIRALON[®] Sheet Material by the Brian Landi Group at RIT

Twenty percent depth-of-discharge cycling of a coin cell with NCA versus Si-CNT (p-SLMP prelithiation) electrodes at C/4 charge, C/3 discharge after 10 cycles at C/10.


Source: " Prelithiation of Silicon-Carbon Nanotube Anodes for Lithium Ion Batteries by Stabilized Lithium Metal Powder (SLMP)" Michael W. Forney, Matthew J. Ganter, Jason W. Staub, Richard D. Ridgley, and Brian J. Landi. ACS Nano, 2012, 6 (11), pp. 9837-9845

MADE POSSIBLE

Enriching lives through innovation

MIRALON® Products Available

MIRALON® products available to enhance your battery solutions

MIRALON® Pulp

CNT for conductive additives

Low carbon footprint

Scale up on-going in USA

MIRALON® Aqueous Dispersions Aqueous Conductive Additive Solvent free solution Dispersions made in Europe

MIRALON[®] NMP Dispersions

Conductive additive in NMP

Replacement of CB in existing applications / formulations

Dispersions made in Europe

miralon

25

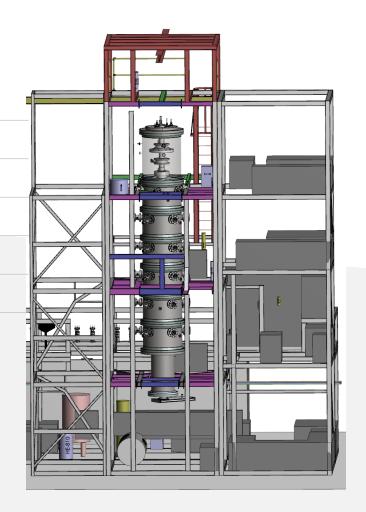
MIRALON® current collector

Available currently in seamed tape spools, 100-150 mm wide

Continuous roll-to-roll tape in development

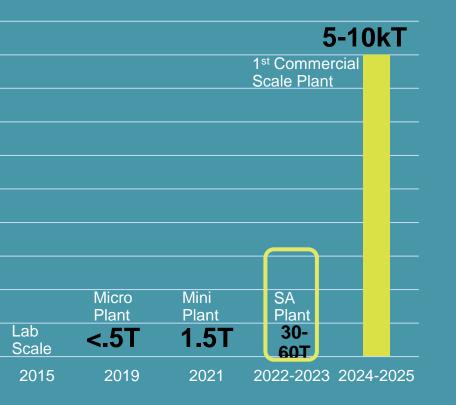
Masterbatch Products for Sampling

		Conductive			The second of the second se
Product	Solvent	Additive	Dispersion Aid	Binder	
MIRALON D NMP 125	NMP	1.25% Mir	0.375% Jeff-3200	3.75% PVDF	
MIRALON D AQU 100	Water	1% Mir	1% Jeff-3202	1% CMC	
MIRALON D AQU 200	Water	2% Mir	2% Jeff-3202	None	Miralon
MIRALON D AQU PAA	Water	0.75% Mir	0.25% PSS	2.5% PAA	MIRALON D AQU 200 2% MIRALON® PULP
MIRALON D AQU PSS	Water	1.5% Mir	0.5% PSS	None	2% JEFFSPERSE™ 3202 Lot # 218-182-1



MIRALON® Capacity Expansion Plans

2010	Technology development
2015	Lab scale production
2018	Nanocomp acquired by Huntsman
2019	Microplant production
2021	Miniplant production
2023	30-60T SA plant production
2024	5-10kT Commercial scale plant



HUNTSMAN

Enriching lives through innovation

MIRALON[®] Capacity Expansion Plans

Disclaimer

The slides following hereafter contain information that is confidential and proprietary to Huntsman International LLC. Recipients of this presentation and the information contained herein shall not copy replicate them by any means whatsoever and shall not share or show them to third parties.

While the information contained herein is to the best of our knowledge, information and belief accurate at the date of publication, it is the responsibility of recipients to determine the applicability of the suitability of such information for their own particular purpose. Huntsman International LLC accepts no responsibility for any damages of any nature resulting from the use of, reliance upon, or the misuse of such information for any purpose.

Forward-Looking Statements

This presentation includes "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. These forward-looking statements include statements concerning our plans, objectives, goals, strategies, future events, future revenue or performance, capital expenditures, financing needs, plans or intentions relating to acquisitions or strategic transactions, business trends and any other information that is not historical information. When used in this presentation, the words "estimates," "expects," "anticipates," "likely," "projects," "outlook," "plans," "intends," "believes," "forecasts," or future or conditional verbs, such as "will," "should," "could" or "may," and variations of such words or similar expressions are intended to identify forward-looking statements. These forward-looking statements, including, without limitation, management's examination of historical operating trends and data, are based upon our current expectations and various assumptions and beliefs. In particular, such forward-looking statements are subject to uncertainty and changes in circumstances and involve risks and uncertainties that may affect the company's operations, markets, products, prices and other factors as discussed in the Company's plans, volatile global economic conditions, cyclical and volatile product markets, disruptions in production at manufacturing facilities, timing of proposed transactions, reorganization or restructuring of the Company's operations, including any delay of, or other negative developments affecting the ability to implement cost reductions and manufacturing optimization improvements in the Company's businesses and to realize anticipated cost savings, and other financial, operational, economic, competitive, environmental, political, legal, regulatory and technological factors. Any forward-looking statement should be considered in light of the risks set forth under the caption "Risk Factors" in our Annual Report on Form 10-

© Copyright 2023. Huntsman Corporation or an affiliate thereof. All rights reserved.

ARALDITE[®], ARATHANE[®], EUREMELT[®], JEFFAMINE[®], JEFFSOL[®], JEFFSPERSE[®], MIRALON[®] and VITROX[®] are registered trademarks of Huntsman Corporation or an affiliate thereof and ULTRAPURE[™] and SHOKLESS[™] are trademarks of Huntsman Corporation or an affiliate thereof in one or more, but not all, countries.