Lyten's High Energy Lithium-Sulfur Batteries for DoD Applications

Jim Paye VP Business Development June 6, 2024

LYTEN OVERVIEW

- Founded 2015 Produce Lyten 3D Graphene™
- Leader in 3D Graphene Patents (>370 patent matters)
- >\$410M Raised Through Series A; finishing Series B
- Initial Applications of Lyten 3D Graphene™
 - Lithium-Sulfur Batteries
 - Composites
 - Sensors
 - US Government Applications
- 145k ft² Facilities in Silicon Valley
 - 3D Graphene Fab (2022)
 - Pilot Cell Production Line (2023)
- 420+ Filed and granted patents
- > 280 employees; >70% advanced degree holders
- Battery Team 85 employees

Highly Confidential; Subject to NDA; Access Restricted (EAR-99)

CLYTEN

3D GRAPHENE: AN ENABLING BREAKTHROUGH

CLYTEN

Proprietary manufacturing method; proprietary application tuning

Conventional graphene: expensive with limited functionality

3D graphene: complex structure with high functionality, readily manufacturable

LYTEN 3D GRAPHENE[™] PROCESSING

CLYTEN

LITHIUM SULFUR- HIGH ENERGY AND SUSTAINABLE

Key Challenges for Traditional LIBs

- Cell performance reaching its fundamental limits (300 Wh/kg)
- Predominantly foreign-sourced active materials causing supply chain issues and unstable (increasing) pricing
- Cobalt and nickel shortfall in coming years
- China has overwhelming dominance in the processed materials and also cell and battery manufacturing
- Safety concerns from thermal runaway are still prevalent

Key Advantages of Lithium-Sulfur Batteries

- Higher specific energy (Sulfur has <u>8x</u> specific capacity vs. LIB cathode). At maturity, 600 Wh/kg and 800 Wh/L possible
- Robust domestic supply chain, free from nickel/cobalt/graphite
- Abundant, low-cost materials: sulfur and carbon
- Inherently safer than LIB due to unique chemistry
- Lyten architecture has a possible path towards low or neutral carbon footprint.
 Challenge: Polysulfide shuttle

Highly Confidential; Subject to NDA; Access Restricted (EAR-99)

Li-S vs Li-Ion and Li-NMC Batteries

CATHODE RAW MATERIAL WEIGHT & COST (2030)

CLYTEN

LIFE CYCLE ANALYSIS (CARBON FOOTPRINT)

CLYTEN

- Lyten Li-S LCA estimates a carbon footprint of 24.5 kg CO2eq / kWh at scale.
- Result is 50% lower than any other battery in comparison group of 28 batteries from 10 peer reviewed LCAs. Lyten result is 80% lower than the mean of all batteries.
- Lyten working on a pathway to drive the carbon footprint Li-S towards or past carbon neutral.

Figure. Cradle-to-gate emissions from 28 battery chemistries analyzed by 10 peer reviewed LCAs (details provided) compare to LCA for Lyten Li-S battery. LCA and comparison study completed by EcoEngineers.

* Or Potentially Earlier, Depending on China's Unilateral Desire

Highly Confidential; Subject to NDA; Export Controlled; Access Restricted (EAR-99)

**Source: 2023 Volta Battery Report (https://volta.foundation/battery-report/)

8 8

Li-S VS NMC (SOLID STATE, Si ANODE) AND LFP

Lyten Lithium Sulfur Cell Architecture

LYTEN 3D GRAPHENE[™] SUPERIOR TO COMMERCIAL NANOCARBONS

Lyten 3D Graphene forms the primary structure of the cathode

- Chemical environment of 3D graphene may be tuned with aliovalent doping and functionalization to enhance sulfur affinity and kinetics
- Outperforms high surface area commercial carbons. Unique core-shell structure, coupled with high surface-area, results in excellent utilization and low self-discharge.
- Cathodes fabricated with spraydried active materials with aqueous binder using standard coaters

LYTEN ADOPTS A MULTI-PRONGED APPROACH

Lithium-Sulfur Cell Degradation Mechanisms

ELECTROLYTE DEVELOPMENT

Lyten Electrolyte vs. Literature Standard **Optimization of Salt Content** Low E/S Electrolytes for Higher Wh/Kg © Capacity (mAh/g) Capacity 260 Density Wh/kg Discharge X Energy I Electrode 200 200 100 Decreasing E/S — 0 0 50 100 150 200 0 200 50 100 150 0 200 Cycle Cycle Number **Electrolytes with Different E/S**

- Trade-off between sulfation kinetics and stability
- Identified family of advanced liquid electrolytes with mixed solvents that significantly outperform the universally used DOL:DME electrolyte, with nearly 4x cycle life.
- Improved performance by optimizing the ratio of solvents and the ratio/concentration of salts.
- Lyten advanced electrolytes enable operation at low E/S and high energy

OPTIMIZATION OF ANODE DESIGN FOR IMPROVED CYCLE LIFE

• New Protective Coatings on Li composite anode

Schematic of Lyten Anode

SEM / EDS of Anode + Coatings

Cycle Life @ C/3,100% DoD with Different Anode Designs

Composite anode with protective coating improves cycle life by 2-3 times vs. Li.

ABUSE TESTING RESULTS – 3rd PARTY

MOBILEPOWER

SOLUTIONS

Battery Technology Center

MPS Testing Battery Technology Cent					
Test	Format	Cell ID	Result		
	Pouch (2.8 Ah)	PP000207	No thermal runaway		
		PP000249	No thermal runaway		
Nail Penetration	18650 (1.6 Ah)	PC000513	No thermal runaway		
		PC000511	No thermal runaway		
	Pouch (2.8 Ah)	PP000205	No thermal runaway		
		PP000202	No thermal runaway		
Crush / Impact	18650 (1.6 Ah)	PC000508	No thermal runaway		
		PC000517	Thermal Runaway		
	Pouch (2.8 Ah)	PP000201	No thermal runaway		
Overdischarge (150%)		PP000208	No thermal runaway		
	18650 (1.6 Ah)	PC000505	No thermal runaway		
		PC000506	No thermal runaway		
	Pouch (2.8 Ah)	PP000204	No thermal runaway		
		PP000224	No thermal runaway		
Overcharge	18650 (1.6 Ah)	PC000503	No thermal runaway		
		PC000504	No thermal runaway		
	Pouch (2.8 Ah)	PP000203	No thermal runaway		
Short-circuit —		PP000210	No thermal runaway		
	18650 (1.6 Ah)	PC000509	No thermal runaway		
		PC000510	No thermal runaway		

Shipping Commercial Li-S A-Samples: Product Specification

- Shipping cells to automotive OEMs, including Stellantis and other leading US and EU auto OEMs
- Capable of up to 345 Wh/kg at C/50, 35°C
- 93% Available energy at 1C relative to C/3

Specifications		
Nominal Capacity	6.55 Ah	
Specific Energy	248 Wh/kg	
Energy Density	300 Wh/L	
Nominal Voltage	2.1 V	
Mass	57.2 g	
Cycle Life (100% DOD)	230 min. @ 60% Capacity	
Max Continuous Discharge	6A@1C	
Peak Discharge 10s	24A@4C(0-100%SOC)	
DCIR@100%SOC,1C,10s	1.8 mΩ	
	Charge: 10°C to TBD	
Operating Temperature	Discharge: -35°C to 45°C	
	Storage: -35°C to 45°C	
Cell Breathing	3 - 5% typical, TBD	

*All values are typical and determined at 25°C, C/D @ C/3 (2.12A), 15 psi Highly Confidential; Subject to NDA; Access Restricted (EAR-99)

San Jose Lithium-Sulfur Cell Pilot Line LYTEN LI-S CELLS USE STANDARD PRODUCTION EQUIPMENT

- Semi-automated cell pilot line in dry-room (2MW capable)
- No custom cell assembly equipment
- Water based cathode slurry (no NMP)

Hi Recent DIU(NSIC) Milestone : production of 50 pouch + 50 cylindrical cells in a single shift

SAN JOSE PILOT LINE

Ramping to 200,000+ cells per year 2MWh nameplate capacity

Commercial LIB production line With only minor modifications

PILOT LINE YIELD AND PRODUCTION NUMBERS Yield >90%

STELLANTIS ANNOUNCES PLANS TO MAKE EV'S 50% LIGHTER

"Lyten's lithium-sulfur battery has the potential to be a key ingredient in enabling mass-market EV adoption globally"

Carlos Tavares, Stellantis CEO

Lithium-Sulfur (Li-S) BB-2590 Battery

Parameter	Requirement	Projected Li-S Performance (Based on 2024 Target)	
Voltage			
24V Mode (12S1P):	20 – 33.6 V	21.6 – 29.4 V	
12V Mode (6S2P):	10 – 16.8 V	10.8 – 14.7 V	
Current			
24V Mode:	10 A (cont.) 36 A (pulse)	18.2 A (cont.) 36.4 A (pulse)	
12V Mode:		36.4 A (cont.) 72.8 A (pulse)	
Energy	275 Wh	232 Wh	
Power	280 W	464 W	
Cycle Life	224 cycles (<c 4.5)<="" th=""><th colspan="2">300 cycles (C/3)</th></c>	300 cycles (C/3)	
Operating Temperature	-30 to 55 °C	-30 to 55 °C	
Weight	3.25 lb.	2.33 lb. Weight savings of 0.92 lb. or a 28%	
Safety		Lithium-Sulfur cells are generally expected to be safer than Li-Ion cells due to its conversion chemistry	

Notes: Battery: 5.0" x 4.4" x 2.5" and Proposed Cell: 4.16" x 3.32" x 0.18".

Lyten's Pouch Cell Performance Road Map

Parameter	2024 Target	2026 Target	2028 Target
Specific Energy (Wh/kg):	350	400	600
Energy Density (Wh/L):	475	600	800
Cycles [EoL 70%] (C/3):	300	500	800

Lyten's next generation Li-S system will outperform the Li-Ion chemistries and provide the warfighter with 28% lighter weight batteries and enhanced safety.

BB-2590 Battery

The weight advantage of the Li-S chemistry means that man portable equipment will be easier to transport due to its lower weight.

LI-S VALUE PROPOSITIONS

Lowest \$/Wh

High Specific Energy (Wh/kg)

by >50%

Replacing Ni-based cathodes with Sulfur is

projected to lower raw material BOM cost

>2x practical specific energy compared to existing technologies

Sulfur is abundant in high quantities as a byproduct of minerals and petrochemical

production - eliminates world reliance on scarce

Abundant and Accessible Raw Materials

Reliable North

Target 100% sourced and manufactured in NA: Lyten could help OEMs meet 2025 USMCA mandates

Decarbonization Material Platform

America Raw Material

Target: 60%+ lower cell material emissions eliminate conventional cathode active material φ_{ς} production, eliminate conventional graphite processing, generate graphene and H₂ from light hydrocarbons

Safety

Supply

Strong resistance to overcharge, metal contamination, and puncture failure modes

Minimal Technology Switching Costs

Lower greenfield capex and minimal incremental brownfield conversion capex due to a simpler manufacturing process and Li-ion B facility compatibility

LYTEN

22

Ni resources

